Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10718, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400515

RESUMO

p27KIP1 (cyclin-dependent kinase inhibitor 1B, p27) is a member of the CIP/KIP family of CDK (cyclin dependent kinase) regulators that inhibit cell cycle CDKs. p27 phosphorylation by CDK1/2, signals its recruitment to the SCFSKP2 (S-phase kinase associated protein 1 (SKP1)-cullin-SKP2) E3 ubiquitin ligase complex for proteasomal degradation. The nature of p27 binding to SKP2 and CKS1 was revealed by the SKP1-SKP2-CKS1-p27 phosphopeptide crystal structure. Subsequently, a model for the hexameric CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex was proposed by overlaying an independently determined CDK2-cyclin A-p27 structure. Here we describe the experimentally determined structure of the isolated CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex at 3.4 Å global resolution using cryogenic electron microscopy. This structure supports previous analysis in which p27 was found to be structurally dynamic, transitioning from disordered to nascent secondary structure on target binding. We employed 3D variability analysis to further explore the conformational space of the hexameric complex and uncovered a previously unidentified hinge motion centred on CKS1. This flexibility gives rise to open and closed conformations of the hexameric complex that we propose may contribute to p27 regulation by facilitating recognition with SCFSKP2. This 3D variability analysis further informed particle subtraction and local refinement approaches to enhance the local resolution of the complex.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Proteínas Quinases Associadas a Fase S , Proteínas Quinases Associadas a Fase S/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Ciclina A/metabolismo , Microscopia Crioeletrônica , Quinases Ciclina-Dependentes/metabolismo
2.
Small ; 19(22): e2206267, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36866488

RESUMO

Hybrid vesicles consisting of phospholipids and block-copolymers are increasingly finding applications in science and technology. Herein, small angle X-ray scattering (SAXS) and cryo-electron tomography (cryo-ET) are used to obtain detailed structural information about hybrid vesicles with different ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and poly(1,2-butadiene-block-ethylene oxide) (PBd22 -PEO14 , Ms  = 1800 g mol-1 ). Using single particle analysis (SPA) the authors are able to further interpret the information gained from SAXS and cryo-ET experiments, showing that increasing PBd22 -PEO14 mole fraction increases the membrane thickness from 52 Å for a pure lipid system to 97 Å for pure PBd22 -PEO14 vesicles. Two vesicle populations with different membrane thicknesses in hybrid vesicle samples are found. As these lipids and polymers are reported to homogeneously mix, bistability is inferred between weak and strong interdigitation regimes of PBd22 -PEO14 within the hybrid membranes. It is hypothesized that membranes of intermediate structure are not energetically favorable. Therefore, each vesicle exists in one of these two membrane structures, which are assumed to have comparable free energies. The authors conclude that, by combining biophysical methods, accurate determination of the influence of composition on the structural properties of hybrid membranes is achieved, revealing that two distinct membranes structures can coexist in homogeneously mixed lipid-polymer hybrid vesicles.


Assuntos
Bicamadas Lipídicas , Polímeros , Polímeros/química , Bicamadas Lipídicas/química , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Microscopia Eletrônica
3.
Environ Sci Pollut Res Int ; 30(6): 15241-15252, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36166124

RESUMO

Reusing agro-industrial waste does not only help to mitigate environmental impact but also enables valorization through the development of new products. The aim is to enhance the physical and mechanical properties of particleboard panels produced with Eucalyptus wood and different proportions of waste products-coconut fiber (Cocos nucifera L.). Physical properties (density, water absorption, and thickness swelling) and mechanical properties (static bending and internal bond resistance) were assessed, and panels reinforced with coconut fiber showed the best qualities with higher density, greater dimensional stability, and less water absorption. Static bending resistance and internal bond resistance also increased significantly. This demonstrated the potential of achieving compatible characteristics for civil construction and furniture production through the inclusion of waste material. The impact of this research is obtained from the utilization of an important agro-industrial residue in the manufacture of permanent composites.


Assuntos
Cocos , Madeira , Madeira/química , Resíduos Industriais/análise , Resíduos/análise , Água/química
4.
Nat Commun ; 13(1): 3372, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690592

RESUMO

Glycogen is the major glucose reserve in eukaryotes, and defects in glycogen metabolism and structure lead to disease. Glycogenesis involves interaction of glycogenin (GN) with glycogen synthase (GS), where GS is activated by glucose-6-phosphate (G6P) and inactivated by phosphorylation. We describe the 2.6 Å resolution cryo-EM structure of phosphorylated human GS revealing an autoinhibited GS tetramer flanked by two GN dimers. Phosphorylated N- and C-termini from two GS protomers converge near the G6P-binding pocket and buttress against GS regulatory helices. This keeps GS in an inactive conformation mediated by phospho-Ser641 interactions with a composite "arginine cradle". Structure-guided mutagenesis perturbing interactions with phosphorylated tails led to increased basal/unstimulated GS activity. We propose that multivalent phosphorylation supports GS autoinhibition through interactions from a dynamic "spike" region, allowing a tuneable rheostat for regulating GS activity. This work therefore provides insights into glycogen synthesis regulation and facilitates studies of glycogen-related diseases.


Assuntos
Glucosiltransferases , Glicogênio Sintase , Glucose-6-Fosfato/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicoproteínas/metabolismo , Humanos , Músculo Esquelético/metabolismo , Fosforilação
5.
Sci Adv ; 8(1): eabj9424, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985943

RESUMO

Engineered protein cages are promising tools that can be customized for applications in medicine and nanotechnology. A major challenge is developing a straightforward strategy for endowing cages with bespoke, inducible disassembly. Such cages would allow release of encapsulated cargoes at desired timing and location. Here, we achieve such programmable disassembly using protein cages, in which the subunits are held together by different molecular cross-linkers. This modular system enables cage disassembly to be controlled in a condition-dependent manner. Structural details of the resulting cages were determined using cryo­electron microscopy, which allowed observation of bridging cross-linkers at intended positions. Triggered disassembly was demonstrated by high-speed atomic force microscopy and subsequent cargo release using an encapsulated Förster resonance energy transfer pair whose signal depends on the quaternary structure of the cage.

6.
Commun Biol ; 4(1): 1407, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916604

RESUMO

The roles of RNA sequence/structure motifs, Packaging Signals (PSs), for regulating assembly of an HBV genome transcript have been investigated in an efficient in vitro assay containing only core protein (Cp) and RNA. Variants of three conserved PSs, within the genome of a strain not used previously, preventing correct presentation of a Cp-recognition loop motif are differentially deleterious for assembly of nucleocapsid-like particles (NCPs). Cryo-electron microscopy reconstruction of the T = 4 NCPs formed with the wild-type gRNA transcript, reveal that the interior of the Cp shell is in contact with lower resolution density, potentially encompassing the arginine-rich protein domains and gRNA. Symmetry relaxation followed by asymmetric reconstruction reveal that such contacts are made at every symmetry axis. We infer from their regulation of assembly that some of these contacts would involve gRNA PSs, and confirmed this by X-ray RNA footprinting. Mutation of the ε stem-loop in the gRNA, where polymerase binds in vivo, produces a poor RNA assembly substrate with Cp alone, largely due to alterations in its conformation. The results show that RNA PSs regulate assembly of HBV genomic transcripts in vitro, and therefore may play similar roles in vivo, in concert with other molecular factors.


Assuntos
Genoma Viral , Vírus da Hepatite B/genética , RNA Guia de Cinetoplastídeos/genética , RNA Viral/genética , Montagem de Vírus/genética , Microscopia Crioeletrônica
7.
J Vis Exp ; (171)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34125091

RESUMO

Cryo-electron microscopy (cryoEM) is a powerful technique for structure determination of macromolecular complexes, via single particle analysis (SPA). The overall process involves i) vitrifying the specimen in a thin film supported on a cryoEM grid; ii) screening the specimen to assess particle distribution and ice quality; iii) if the grid is suitable, collecting a single particle dataset for analysis; and iv) image processing to yield an EM density map. In this protocol, an overview for each of these steps is provided, with a focus on the variables which a user can modify during the workflow and the troubleshooting of common issues. With remote microscope operation becoming standard in many facilities, variations on imaging protocols to assist users in efficient operation and imaging when physical access to the microscope is limited will be described.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Crioeletrônica , Substâncias Macromoleculares
8.
Nat Commun ; 12(1): 2791, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990582

RESUMO

Insect pests are a major cause of crop losses worldwide, with an estimated economic cost of $470 billion annually. Biotechnological tools have been introduced to control such insects without the need for chemical pesticides; for instance, the development of transgenic plants harbouring genes encoding insecticidal proteins. The Vip3 (vegetative insecticidal protein 3) family proteins from Bacillus thuringiensis convey toxicity to species within the Lepidoptera, and have wide potential applications in commercial agriculture. Vip3 proteins are proposed to exert their insecticidal activity through pore formation, though to date there is no mechanistic description of how this occurs on the membrane. Here we present cryo-EM structures of a Vip3 family toxin in both inactive and activated forms in conjunction with structural and functional data on toxin-membrane interactions. Together these data demonstrate that activated Vip3Bc1 complex is able to insert into membranes in a highly efficient manner, indicating that receptor binding is the likely driver of Vip3 specificity.


Assuntos
Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Animais , Toxinas de Bacillus thuringiensis/genética , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , Variação Genética , Inseticidas/química , Inseticidas/farmacologia , Lipossomos/química , Modelos Moleculares , Controle Biológico de Vetores , Domínios Proteicos , Estrutura Quaternária de Proteína , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Homologia Estrutural de Proteína
9.
Int J Parasitol ; 51(4): 251-261, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33253697

RESUMO

The Schistosoma mansoni venom allergen-like protein (SmVAL) superfamily is a collection of at least 29 molecules that have been classified into two distinctive groups (Group 1 and Group 2 SmVALs). The fundamental basis for SmVAL segregation relates to signal peptide and conserved cysteine retention (present in all Group 1 SmVALs, but absent in all Group 2 SmVALs). These structural differences have led to the hypothesis that most Group 1 SmVALs, found as components of schistosome excretory/secretory (E/S) products, predominantly interact with their environment (intermediate or definitive hosts) whereas the Group 2 SmVALs are retained within the schistosome to fulfil parasite-related functions. While experimental evidence to support Group 1 SmVAL/host interactions is growing, similar support for identification of parasite-related Group 2 SmVAL functions is currently lacking. By applying a combination of approaches to the study of SmVAL6, we provide the first known evidence for an essential function of a Group 2 SmVAL in schistosome biology. After whole mount in situ hybridisation (WISH) localised Smval6 to the anterior region of the oesophageal gland (AOG) and cells scattered through the mesenchyme in adult schistosomes, short interfering RNA (siRNA)-mediated silencing of Smval6 was employed to assess loss of function phenotypes. Here, siSmval6-mediated knockdown of transcript and protein levels led to an increase in tegumental permeability as assessed by the quantification of TAMRA-labelled dextran throughout sub-tegumental cells/tissues. Yeast two hybrid screening using SmVAL6 as a bait revealed Sm14 (a fatty acid binding protein) and a dynein light chain (DLC) as directly interacting partners. Interrogation of single-cell RNA-seq (scRNA-seq) data supported these protein interactions by demonstrating the spatial co-expression of Smval6/dlc/Sm14 in a small proportion of adult cell types (e.g. neurons, tegumental cells and neoblasts). In silico modelling of SmVAL6 with Sm14 and DLC provided evidence that opposing faces of SmVAL6 were likely responsible for these protein/protein interactions. Our results suggest that SmVAL6 participates in oesophageal biology, formation of higher order protein complexes and maintenance of tegumental barrier function. Further studies of other Group 2 SmVALs may reveal additional functions of this enigmatic superfamily.


Assuntos
Alérgenos , Schistosoma mansoni , Animais , Hibridização In Situ , Schistosoma mansoni/genética , Peçonhas
10.
Materials (Basel) ; 13(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640666

RESUMO

This research analyses straw degradation inside straw bale walls in the region and develops the prediction of degradation inside straw bale walls. The results show that the straw inside straw bale walls have no serious concerns of degradation in the high hygrothermal environment in the region with only moderate concerns of degradation in the area 2-3 cm deep behind the lime render. The onsite investigations indicate that the degradation isopleth model can only predict straw conditions behind the rendering layer, whereas the isothermal model fits the complete situation inside straw bale walls. This research develops the models for predicting straw degradation levels inside a straw bale building in a warm (humid) continental climate. The impact of this research will help the growth of low carbon energy efficient straw bale construction with confidence pertaining to its long-term durability characteristics both in the region and regions sharing similar climatic features globally.

11.
Nat Commun ; 10(1): 4189, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519882

RESUMO

Retroviral integrase can efficiently utilise nucleosomes for insertion of the reverse-transcribed viral DNA. In face of the structural constraints imposed by the nucleosomal structure, integrase gains access to the scissile phosphodiester bonds by lifting DNA off the histone octamer at the site of integration. To clarify the mechanism of DNA looping by integrase, we determined a 3.9 Å resolution structure of the prototype foamy virus intasome engaged with a nucleosome core particle. The structural data along with complementary single-molecule Förster resonance energy transfer measurements reveal twisting and sliding of the nucleosomal DNA arm proximal to the integration site. Sliding the nucleosomal DNA by approximately two base pairs along the histone octamer accommodates the necessary DNA lifting from the histone H2A-H2B subunits to allow engagement with the intasome. Thus, retroviral integration into nucleosomes involves the looping-and-sliding mechanism for nucleosomal DNA repositioning, bearing unexpected similarities to chromatin remodelers.


Assuntos
Microscopia Crioeletrônica/métodos , DNA/química , Histonas/química , Nucleossomos/metabolismo , DNA/ultraestrutura , Transferência Ressonante de Energia de Fluorescência , Histonas/ultraestrutura , Humanos , Nucleoproteínas/química , Nucleoproteínas/ultraestrutura , Nucleossomos/ultraestrutura , Estrutura Quaternária de Proteína
12.
J Med Chem ; 60(17): 7315-7332, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28737946

RESUMO

Integrase mutations can reduce the effectiveness of the first-generation FDA-approved integrase strand transfer inhibitors (INSTIs), raltegravir (RAL) and elvitegravir (EVG). The second-generation agent, dolutegravir (DTG), has enjoyed considerable clinical success; however, resistance-causing mutations that diminish the efficacy of DTG have appeared. Our current findings support and extend the substrate envelope concept that broadly effective INSTIs can be designed by filling the envelope defined by the DNA substrates. Previously, we explored 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides as an INSTI scaffold, making a limited set of derivatives, and concluded that broadly effective INSTIs can be developed using this scaffold. Herein, we report an extended investigation of 6-substituents as well the first examples of 7-substituted analogues of this scaffold. While 7-substituents are not well-tolerated, we have identified novel substituents at the 6-position that are highly effective, with the best compound (6p) retaining better efficacy against a broad panel of known INSTI resistant mutants than any analogues we have previously described.


Assuntos
Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , Naftiridinas/química , Naftiridinas/farmacologia , Linhagem Celular , Cristalografia por Raios X , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Integrase de HIV/química , Integrase de HIV/genética , HIV-1/enzimologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Modelos Moleculares , Mutação , Replicação Viral/efeitos dos fármacos
13.
Nat Microbiol ; 2: 17098, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28628133

RESUMO

Formation of the hepatitis B virus nucleocapsid is an essential step in the viral lifecycle, but its assembly is not fully understood. We report the discovery of sequence-specific interactions between the viral pre-genome and the hepatitis B core protein that play roles in defining the nucleocapsid assembly pathway. Using RNA SELEX and bioinformatics, we identified multiple regions in the pre-genomic RNA with high affinity for core protein dimers. These RNAs form stem-loops with a conserved loop motif that trigger sequence-specific assembly of virus-like particles (VLPs) at much higher fidelity and yield than in the absence of RNA. The RNA oligos do not interact with preformed RNA-free VLPs, so their effects must occur during particle assembly. Asymmetric cryo-electron microscopy reconstruction of the T = 4 VLPs assembled in the presence of one of the RNAs reveals a unique internal feature connected to the main core protein shell via lobes of density. Biophysical assays suggest that this is a complex involving several RNA oligos interacting with the C-terminal arginine-rich domains of core protein. These core protein-RNA contacts may play one or more roles in regulating the organization of the pre-genome during nucleocapsid assembly, facilitating subsequent reverse transcription and acting as a nucleation complex for nucleocapsid assembly.


Assuntos
Vírus da Hepatite B/fisiologia , Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Sítios de Ligação , Biologia Computacional , Ligação Proteica , Técnica de Seleção de Aptâmeros
14.
Proc Natl Acad Sci U S A ; 114(21): 5509-5514, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28490494

RESUMO

The interactions between a retrovirus and host cell chromatin that underlie integration and provirus expression are poorly understood. The prototype foamy virus (PFV) structural protein GAG associates with chromosomes via a chromatin-binding sequence (CBS) located within its C-terminal region. Here, we show that the PFV CBS is essential and sufficient for a direct interaction with nucleosomes and present a crystal structure of the CBS bound to a mononucleosome. The CBS interacts with the histone octamer, engaging the H2A-H2B acidic patch in a manner similar to other acidic patch-binding proteins such as herpesvirus latency-associated nuclear antigen (LANA). Substitutions of the invariant arginine anchor residue in GAG result in global redistribution of PFV and macaque simian foamy virus (SFVmac) integration sites toward centromeres, dampening the resulting proviral expression without affecting the overall efficiency of integration. Our findings underscore the importance of retroviral structural proteins for integration site selection and the avoidance of genomic junkyards.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Spumavirus/fisiologia , Integração Viral
15.
Science ; 355(6320): 93-95, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059770

RESUMO

Retroviral integrase (IN) functions within the intasome nucleoprotein complex to catalyze insertion of viral DNA into cellular chromatin. Using cryo-electron microscopy, we now visualize the functional maedi-visna lentivirus intasome at 4.9 angstrom resolution. The intasome comprises a homo-hexadecamer of IN with a tetramer-of-tetramers architecture featuring eight structurally distinct types of IN protomers supporting two catalytically competent subunits. The conserved intasomal core, previously observed in simpler retroviral systems, is formed between two IN tetramers, with a pair of C-terminal domains from flanking tetramers completing the synaptic interface. Our results explain how HIV-1 IN, which self-associates into higher-order multimers, can form a functional intasome, reconcile the bulk of early HIV-1 IN biochemical and structural data, and provide a lentiviral platform for design of HIV-1 IN inhibitors.


Assuntos
Integrase de HIV/química , HIV-1/química , Integração Viral , Domínio Catalítico , Microscopia Crioeletrônica , DNA Viral/química , DNA Viral/ultraestrutura , Desenho de Fármacos , Integrase de HIV/ultraestrutura , Inibidores de Integrase de HIV/química , HIV-1/enzimologia , HIV-1/ultraestrutura , Humanos , Modelos Moleculares , Domínios Proteicos , Eletricidade Estática , Montagem de Vírus
16.
ACS Chem Biol ; 11(4): 1074-81, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26808478

RESUMO

HIV integrase (IN) strand transfer inhibitors (INSTIs) are among the newest anti-AIDS drugs; however, mutant forms of IN can confer resistance. We developed noncytotoxic naphthyridine-containing INSTIs that retain low nanomolar IC50 values against HIV-1 variants harboring all of the major INSTI-resistant mutations. We found by analyzing crystal structures of inhibitors bound to the IN from the prototype foamy virus (PFV) that the most successful inhibitors show striking mimicry of the bound viral DNA prior to 3'-processing and the bound host DNA prior to strand transfer. Using this concept of "bi-substrate mimicry," we developed a new broadly effective inhibitor that not only mimics aspects of both the bound target and viral DNA but also more completely fills the space they would normally occupy. Maximizing shape complementarity and recapitulating structural components encompassing both of the IN DNA substrates could serve as a guiding principle for the development of new INSTIs.


Assuntos
Farmacorresistência Viral , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , Cristalografia por Raios X , Inibidores de Integrase de HIV/química
17.
Nature ; 523(7560): 366-9, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26061770

RESUMO

Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration.


Assuntos
Nucleossomos/química , Nucleossomos/virologia , Spumavirus/metabolismo , Integração Viral , Substituição de Aminoácidos , Sítios de Ligação/genética , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Genoma/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Integrases/metabolismo , Modelos Moleculares , Nucleossomos/genética , Nucleossomos/ultraestrutura , Multimerização Proteica , Recombinação Genética , Spumavirus/química , Spumavirus/genética , Spumavirus/ultraestrutura
18.
J Cell Biol ; 190(5): 823-34, 2010 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-20819936

RESUMO

The MIND multiprotein complex is a conserved, essential component of eukaryotic kinetochores and is a constituent of the tripartite KMN network that directly attaches the kinetochore to the mitotic spindle. The primary microtubule-binding complex in this network, NDC80, has been extensively characterized, but very little is known about the structure or function of the MIND complex. In this study, we present biochemical, hydrodynamic, electron microscopy, and small-angle x-ray scattering data that provide insight into the overall architecture and assembly of the MIND complex and the physical relationship of the complex with other components of the KMN network. We propose a model for the overall structure of the complex and provide data on the interactions with NDC80, Spc105p, and thus the mitotic spindle.


Assuntos
Cinetocoros/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Dimerização , Escherichia coli/genética , Eucariotos , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Fosforilação , Ligação Proteica/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Difração de Raios X , Raios X , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...